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Abstract

The prevalence of adolescent overweight and obesity (hereafter, simply “overweight”) in the US 

has increased over the past several decades. Individually-targeted prevention and treatment 

strategies targeting individuals have been disappointing, leading some to propose leveraging social 

networks to improve interventions. We hypothesized that social network dynamics (social 

marginalization; homophily on body mass index, BMI) and the strength of peer influence would 

increase or decrease the proportion of network member (agents) becoming overweight over a 

simulated year, and that peer influence would operate differently in social networks with greater 

overweight. We built an agent-based model (ABM) using results from R-SIENA. ABMs allow for 

the exploration of potential interventions using simulated agents. Initial model specifications were 

drawn from Wave 1 of the National Longitudinal Study of Adolescent Health (Add Health). We 

focused on a single saturation school with complete network and BMI data over two waves 

(n=624). The model was validated against empirical observations at Wave 2. We focused on 

overall overweight prevalence after a simulated year. Five experiments were conducted: (1) 

changing attractiveness of high-BMI agents; (2) changing homophily on BMI; (3) changing the 

strength of peer influence; (4) shifting the overall BMI distribution; and (5) targeting dietary 

interventions to highly connected individuals. Increasing peer influence showed a dramatic 

decrease in the prevalence of overweight; making peer influence negative (ie, doing the opposite 

of friends) increased overweight. However, the effect of peer influence varied based on the 

underlying distribution of BMI; when BMI was increased overall, stronger peer influence 

increased proportion of overweight. Other interventions, including targeted dieting, had little 

impact. Peer influence may be a viable target in overweight interventions, but the distribution of 
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body size in the population needs to be taken into account. In low-obesity populations, 

strengthening peer influence may be a useful strategy.
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Introduction

The prevalence of childhood obesity has risen markedly over the past several decades 

(Ogden, Carroll et al. 2010; Ogden, Lamb et al. 2010), although it appears to have leveled 

off in recent surveys (Ogden, Carroll et al. 2012). The ineffectiveness of many available 

intervention strategies has led to a search for novel approaches to preventing and treating 

childhood obesity (Waters, de Silva-Sanigorski et al. 2011). For this reason, social 

influences including neighborhood environments (Gordon-Larsen, Nelson et al. 2006) and 

peer influences (Smith and Christakis 2008) have been examined.

One promising line of research involves network interventions (Valente and Davis 1999; 

Valente 2012). Longitudinal analyses of children’s friendship networks (Shoham, Tong et 

al. 2012; Simpkins, Schaefer et al. 2013) and play groups (Gesell, Tesdahl et al. 2012) 

shows peer influence to operate independently of peer selection, although research has not 

been consistent (de la Haye, Robins et al. 2011).

Social learning theory proposes that individuals’ behaviors may arise and be reinforced 

through observing and imitating others, including peers (Bandura 1977). The mechanism 

underlying peer influence likely involves conformity (Brechwald and Prinstein 2011), while 

neuroscientific studies suggest that social rejection is experienced as a form of pain (Kross, 

Berman et al.). Peer influence is thought to play a role in the development and maintenance 

of chronic disease and associated risk factors, including overweight and obesity. Peer 

influence is often modeled as a social network phenomenon. Friendship networks provide 

information allowing researchers to extend social influence beyond the direct influence of 

friends. Christakis and Fowler (Christakis and Fowler 2007) found that obesity appears to 

spread not only between immediate contacts (alters) of study subjects (egos), but also their 

2nd and 3rd degree contacts (eg, friends’ friends’ friends). This suggests that overweight may 

follow a “diffusion of innovations” model (Rogers 1983), making networks particularly 

relevant (Valente 1995).

Alters provide the linkage between egos and the larger social network, and therefore they 

mediate any flow of information, norms, etc. through the network. Simulations conducted by 

Bahr and colleagues (Bahr, Browning et al. 2009) demonstrated that under various peer 

influence scenarios, the larger network must be taken into account. However, their study 

focused on a highly stylized network (grid lattice, although other structures were tried) and a 

cellular automata framework (ie, agent represented by cells in the grid follow rules based on 

only their own neighboring cells).
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Real world networks are known to differ from simulated networks in important ways 

including clustering, mean path length, and degree distribution (Hamill and Gilbert 2009). 

Individual characteristics of networks can be effectively simulated one at a time: path length 

is reduced in small world networks (Watts and Strogatz 1998); lattice and small world 

networks show high clustering; and degree distribution can be effectively “grown” using a 

preferential attachment model (Barabasi and Albert 1999). These sorts of networks have 

been successfully used to model, eg, the implications for network structure on an epidemic 

of infectious disease (Rahmandad and Sterman 2008). Attempts have been made to combine 

several aspects of real-world networks, such as social circles (Hamill and Gilbert 2009) and 

multiscale network simulation (Gutfraind, Meyers et al. 2012). A further limitation of 

stylized approaches to simulating social networks is the lack of dynamics seen in the real 

world. While the Barabasi preferential attachment model (Barabasi and Albert 1999) does 

allow for dynamic growth of the network, it allows for no loss of ties once they are formed. 

For these reasons, basing simulations on a real-world network would be desirable.

However, real world networks present a challenge for understanding peer influences 

including the mechanisms underlying such influence (Cunningham, Vaquera et al. 2012). 

While we can observe clustering of health-related behaviors in networks (e.g., obesity), we 

cannot directly observe the mechanisms that gave rise to such clustering. Endogenous (peer 

influence) effects may give rise to the same clustering phenomenon as exogenous (shared 

environmental) effects and shared background characteristics (selection or homophily) 

effects. Manski calls this the “reflection problem,” since effects mirror one another (Manski 

1993). There have been several critiques of the social network “contagion” hypothesis in 

academic (Cohen-Cole and Fletcher 2008; Cohen-Cole and Fletcher 2008; Halliday and 

Kwak 2009; Shalizi and Thomas 2010; Shalizi and Thomas 2011) and popular (Johns 2010) 

literatures. In essence, three mechanisms might account for observed contagion: true social 

influence; confounding by shared environments; and homophily (“love of sameness”) on 

shared predisposition to BMI and related behaviors. The actor-based stochastic model 

(Snijders, van de Bunt et al. 2010; Steglich, Snijders et al. 2010) offers perhaps the only way 

to tackle this problem by iteratively modeling the evolution of social network structure and 

the behavior of individuals in the network. This method has been implemented in the R 

package SIENA (Simulation Investigation for Empirical Network Analysis). Parameter 

estimates from R-SIENA could then be used to explore various interventions, using an 

observed dynamic network as a basis.

It is unclear how social networks could be exploited to promote behavior change. One 

suggested approach is to target the behavior of key nodes, or “opinion leaders,” which can 

be provisionally defined as the individuals that have the highest in-degree (Valente and 

Davis 1999). However, as Valente has noted, there is limited empirical work to support 

network-based interventions (Valente 2009), and given the great expense and effort involved 

in collecting network data, simulations may offer insights as to which interventions are more 

or less likely to succeed. Agent-Based Models (ABMs) allow us to create simulated agents 

in a computational platform, assign them traits (such as behaviors) and rules for interacting 

with other agents and the environment. We can then run simulation experiments, and 

observe the network change and behavior change of individuals and the system as a whole. 

The primary goal of our simulations is to gain insights into what network mechanisms are 
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salient (or irrelevant) for obesity and which obesity-related approaches might leverage social 

networks.

In this study, we built an agent-based model (ABM) of adolescent body mass index (BMI) 

and tested the impact of social influence on combined overweight and obesity prevalence in 

the population (hereafter referred to simply as “overweight”, defined as a BMI of at least 

25kg/m2). We validated this model by comparing network characteristics (distribution of in-

degree, out-degree, and triad census) and behavior (mean BMI, distribution of BMI) 

between simulated networks and the observed network after one simulated year. We 

examined several aspects of social influence, including the robustness of the system to 

changes in particular parameters, which can be interpreted as behavior rules. We focused on 

peer selection, strength of peer influence, and whether targeted weight loss in the overweight 

population can better reduce prevalence of overweight in the network as a whole.

Methods

Population for deriving parameter estimates

Data were drawn from the first two waves of the National Longitudinal Study of Adolescent 

Health (Add Health), a representative sample of US high schools. The two waves of data 

were collected a year apart (2004 and 2005). Details of the study design can be found 

elsewhere (Harris, Halpern et al. 2009). We focused on one of the largest saturation high 

schools, referred to elsewhere as Jefferson High School (Moody 2004). This high school is 

unique because of its rural location and racial homogeneity. A total of 624 respondents were 

present in both waves and had complete self-reported information on weight and height. We 

calculated BMI by dividing weight (in kilograms) by height squared (in meters squared). 

The model included network parameters (outdegree, reciprocity, transitive triplets, 

homophily on sex, grade, age, and income, attractiveness of higher BMI, sociability of those 

with higher BMI, and homophily on BMI). Summary values for the population at baseline 

are reported in Table 1.

Overview of the empirical analysis

The SIENA package in R was used to obtain initial parameter estimates, which were the 

bases for specifying rules in our agent-based model. The R-SIENA model is a type of 

discrete choice model (Train 2009); actors in the model are assumed to make particular 

choices, and the utility associated with various choice is inferred from the choices actually 

made. Results of this model were previously published (THE AUTHORS). Table 2 shows 

the parameters from our empirical analysis. We cannot elaborate on details of the R-SIENA 

model here, but in essence, there are four types of parameters estimated by the model. Two 

rate parameters estimate how much change there is in the network (“Basic rate parameter 

friendship”) and how much change there is in BMI (“Rate parameter for BMI behavior”). 

The other two types of parameters are network and behavior effects. Confidence intervals 

are reported for parameter measures, allowing us to judge the range of values and whether 

the null value lies within the confidence intervals. We are primarily interested in BMI-

related effects in our model: “attractiveness of alter’s BMI”, which is negative if overweight 

or obese respondents are less likely to be named as friends (see (Strauss and Pollack 2003)); 
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“Similarity of ego’s and alter’s BMI”, which is positive if there is homophily on BMI (i.e., 

two respondents are more likely to form a friendship tie if they are similar in BMI); and 

“BMI average similarity”, which is a measure of peers’ influencing one another’s BMI (i.e., 

the tendency to assimilate to the average friends’ BMI). Other homophily parameters 

include sex, grade, age, and income similarity. Other structural effects in the model include 

outdegree (negative, because there is a tendency to limit friendships), reciprocity (the 

tendency to return friendship nominations), transitive triplets (egos are more likely to form 

friendships with their friends’ friends), and sociability related to ego’s BMI (all things being 

equal, those with higher BMI have a tendency to name more friends). Actors in the model 

may either make a network change or a behavior change, and only one change may be made 

at a time and in one-unit increments (for example, add or drop a single tie; increase by one 

unit of BMI). The BMI linear and quadratic shape parameters relate current BMI to future 

gain or loss, as those with BMIs above the average have a tendency to gain more weight; the 

quadratic shape parameter is positive because this tendency is compounded at higher BMI 

values, which is consistent with underlying addictive behavior (Snijders, van de Bunt et al. 

2010).

Translating parameter estimates into probabilities for behavior in the agent-based model

Variables are standardized by dividing by the range of possible values then centering at the 

mean. Parameters may be interpreted as the log-odds of taking a particular action for each 

one-unit increase in the standardized variable. For example, the mean similarity in BMI in 

the population (i.e., the average difference between any two agents) was 0.865, while the 

range of potential BMI similarity was 33 (the largest value of BMI minus the smallest 

value). For a respondent to move in the direction of friends’ BMI, the similarity score would 

increase by 1/33, or 0.0303; moving away from the average of alters would similarly 

decrease this score by that amount. The difference in similarity score can then be multiplied 

by the parameter estimate and exponentiated, much as one would do in a logistic regression 

model. The odds ratio of moving one unit in the direction of average friend’s BMI vs. 

staying at the same BMI is thus exp(0.0303*14.1) = 1.53. Taking into account the tendency 

for overweight individuals to continue on a trajectory of weight gain (“BMI linear shape” 

and “BMI quadratic shape” parameters), we can calculate the contribution of all three 

parameters to an objective function for BMI. We can make similar calculations for the 

network objective function.

The objective function is analogous to a utility function for each respondent; it captures how 

satisfied he or she is with current network configuration or BMI (or perhaps more 

realistically, the factors contributing to BMI such as diet, which we could not observe 

longitudinally with the Add Health data). The objective function may then be translated into 

an expected probability for choosing one behavior or another. More thorough discussions of 

discrete choice models and their interpretation may be found elsewhere (Train 2009).

Building an agent-based model

Based on these parameters, an agent-based social network model was built using the 

NetLogo platform (Wilensky 1999). NetLogo is a freely available agent-based modeling 

software package that is easy to implement yet flexible in terms of functionality. Each agent 
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represents an Add Health respondent (n=624). Code was written to translate parameters into 

objective functions, and the initial agent attributes were observed Add Health attributes at 

Wave 1. The empirical network at Wave 1 was also used as the initial condition for 

friendship ties between agents. Because of the friendship ties, agents serve as the local 

environment for one another.

In order to keep close to the empirical data, models were run for a simulated “year”, defined 

by the rate functions (12.87 + 4.17 = 17.04) and the number of agents (624). In other words, 

each agent was chosen on average 17.04 times, creating 10,632 total opportunities for 

change. Each change opportunity was a “tick” or step in the model. At each tick, an agent 

was randomly chosen, and then asked to make either a network change or a behavior 

change, with probability proportional to the rate function for each type of change (ie, 75.5% 

probability of a network change; 24.5% of a BMI change). If it is a network change, the 

agent calculates the value of the objective function for its current network configuration. 

Next, the agent calculates what the objective function would be if it were to add a new tie or 

drop an existing tie. Because there are (n-1) potential ties with other actors, plus one 

configuration with no ties, the agent calculates 624 objective function values. These values 

are then translated into probabilities for any particular network “move” (including retaining 

the same network), arrayed into a list of cumulative probabilities, and compared against a 

random draw from the uniform distribution with range of (0,1). If the randomly selected 

draw falls within the range of the cumulative probability for a particular move, the agent 

chooses that move. An overview of the modeling procedure is shown in Figure 1. In order to 

simplify the model, we assume that all parameters represent causal effects that are 

independent of one another.

The rule for BMI change according to the objective function values is similar, but 

computationally much simpler: the only choices are to move down one unit, stay the same, 

or move up one unit. Agents compare their own BMI to the BMI of others. Agents with 

higher BMIs have an inherent tendency to increase weight, which is also part of the 

calculation. If an agent has friends with lower BMI, this serves as a check against gaining 

weight, while having friends with higher BMI promotes further weight gain. The objective 

function for maintaining the same BMI is thus:

where BMI is the agent’s current BMI, centered on the population average, and SIM is the 

average similarity between the agent’s current BMI and its friends’ average similarity, 

scaled by the BMI range (33) and centered by the population average (0.865). The agent also 

evaluates the objective function for increasing and decreasing BMI by 1 unit at each time 

step, then calculates a probability for increasing or decreasing BMI or staying the same by 

dividing the exponentiated value for a particular choice by the sum of the exponentiated 

values for all 3 possible choices. In effect, the threshold for gaining weight is lowered if the 

average friend has greater body size than the agent, and increased if the average friend has a 

smaller body size. The threshold for gaining weight is also lowered if the agent has a large 

BMI relative to the average.
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All simulations were run 100 times with different random seeds, allowing us to generate box 

plots and 95% confidence limits of the distribution of model runs. Model runs took 

approximately 5 minutes each; on a 4-core, 2.66GHz, 64-bit Windows workstation using all 

four processors, the 100 runs were completed in under 3 hours.

Model validation

In order to verify that the model was capturing network dynamics and patters of behavior, 

we compared simulated results at the end of the model run to empirical observations of the 

network and BMI at Wave 2 of Add Health. Statistical analyses and plots were created using 

the R statistical analysis program. We focused on three key measures of the network: the 

distribution of in-degree (number of friends “named” by each agent); distribution of out-

degree (number of alters that “named” the agent as a friend); and the triad census, according 

to the standard taxonomy for naming the 16 possible configurations of 3 agents (Holland 

and Leinhardt 1970). For the triad census, we were especially concerned about the 

possibility of over-simulating 3-cycles, which are rarely observed in real friendship 

networks, and under-simulating cliques of size 3, which should be relatively common (Davis 

1970; Snijders, van de Bunt et al. 2010). For BMI, we compared observed BMI at wave 2 

and simulated BMIs after one simulated year. If simulations are accurately capturing the 

distributions, we should see the empirical estimates falling within the 95% confidence 

limits.

Experiments

We conducted a suite of experiments, based on the empirical network. In these experiments, 

we emphasize general qualitative features of the results, rather than precise measures of 

prevalence. Our goal with these experiments is to guide intuition for model refinement and 

future study (including intervention studies) rather than to obtain a precise measure of the 

effect of certain “what-if” scenarios.

Experiment 1. Does marginalization reinforce BMI and overweight?—First, we 

asked if peer selection (assuming peer influence is operative) drives overweight rates up or 

down. Several hallmarks of complex systems make the answer to this question non-intuitive, 

especially feedbacks between peers and non-linearity of the system. If overweight students 

tend to form friendships amongst themselves, this could both reinforce obesity-related 

behaviors (which would tend to increase obesity prevalence), and isolate non-overweight 

students from peers’ obesity-related behaviors (which may mitigate obesity prevalence). On 

the other hand, overweight students’ ties with non-overweight friends may mitigate 

overweight in the overweight group, but increase it in the non-overweight group. We began 

with the original value of marginalization (−0.007), then tripled this value (− 0.021) to make 

it strongly negative. Translating into odds ratios, an agent with a BMI of 30 kg/m2 would 

have an odds ratio of 0.81 for receiving a friendship tie compared to an agent with a BMI of 

20 kg/m2 (10 units lower). We also examined what effect removing marginalization would 

have on the BMI of the system, as well as making high BMI more attractive than low BMI 

by reversing the sign and tripling the absolute value (+0.021).
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Experiment 2. Does increasing homophily on BMI contribute to higher rates of 
overweight?—To test the effect of peer selection on the BMI of agents, the experiment 

was conducted on changing the parameter (network similarity) to be 0, negative, or 

quadrupled. The purpose of this experiment is to test if making friends based on different 

levels of similarity will have different effects on their BMI. This process is called 

“homophily”, and may be understood by the expression “birds of a feather flock together” 

(McPherson, Smith-Lovin et al. 2001). To translate this into odds ratios, the estimated 

parameter value for similarity (−0.54) tells us that agents have 1.14 times the odds of 

choosing friends with the same BMI, compared to an alter of average similarity. 

Quadrupling this parameter translates into an odds ratio of 1.34.

Experiment 3. Does increasing the strength of peer influence increase the 
prevalence of overweight?—We then asked how the strength of peer influence relates 

to the supposed “spread” of overweight in the system. Christakis and Fowler’s work argues 

that obesity (like influenza) can be caught from friends and relatives (Christakis and Fowler 

2007). This may operate via local social influence like peer or role modeling (Bandura 

1986), or perhaps as a result of shifting group norms (Hruschka, Brewis et al. 2011). 

Extrapolating linearly, this suggests that stronger peer influence should lead to higher 

overweight rates, while weaker influence would lead to lower rates. To do this experiment, 

we changed the parameter, behavior similarity to be 0, negative number (2 times the 

influence strength, but in the opposite direction, ie, tell the agent to “do the opposite of my 

friends”) and larger positive number twice the original value (assimilate more strongly to 

friends’ BMI). The purpose of this is to test if peer influence has a positive effect on the 

spread of overweight. The OR for increasing a unit closer to the average alter vs. staying the 

same would be 1.54 under the original parameter value (14.1); when we double the 

parameter to 28.2, this OR increases to exp (28.2*0.0303) = 2.33.

Experiment 4. How does peer influence interact with the distribution of BMI?
—Since Wave 1 of the Add Health study was begun in 1994, there have been dramatic 

increases in overweight among adolescents. The prevalence of overweight has increased to 

approximately 1 out of 3 adolescents (Go, Mozaffarian et al. 2013); obesity (for children, 

above the 95th percentile) has increased over 50% since 1988, to 17.5% in boys and 14.7% 

in girls (Ogden, Carroll et al. 2012). Peer influence may be very different in a population 

with such high combined rates of overweight and obesity. Therefore, we explored how the 

strength of influence interacts with the distribution of BMI in the population. We conducted 

this experiment by shifting the entire distribution of BMI from its initial value (22.4 kg/m2) 

by 1, 2, 3, and 4 units up. We then compared negative and strongly positive influences with 

the original peer influence parameter (see experiment 3 above).

Experiment 5. Are interventions targeting highly connected overweight agents 
more successful than randomly selecting overweight agents?—Next, we 

explored a targeted intervention strategy suggested by Valente and Davis (Valente and 

Davis 1999). We explored two scenarios. First, we randomly selected 10% of agents (n=62), 

restricted to those who were in the combined overweight or obese category 

(BMI>=25kg/m2), who were then placed on a hypothetical successful diet (drop 4 units 
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BMI). Next, we again selected 10% of the agents (again, n=62) who were overweight or 

obese, but only choosing those agents with the highest in-degree, i.e., those who might be 

considered “opinion leaders”. Our thinking was that if these high in-degree individuals drop 

weight, they may influence the behavior of those they are connected with.

All experiments were conducted at baseline, and the model was run for one simulated year.

Results

Model validation

We ran 100 simulations by using different random seeds. The ABM fit the observed 

behavior data (body mass index, or BMI), with a correlation coefficient of 0.906 between 

the simulated mean BMI for 100 runs and real BMI. Simulations were compared to the 

empirical network and behavior statistics, with a focus on degree, reciprocity, and transitive 

triads. Figure 2 shows the comparison of the BMI distributions between the simulated data 

(pooling the data from 100 runs) and the real data. We see that the simulated data fit the real 

data very well, with the solid line (observed) falling inside the box plots across the 

distribution.

Next, we compared out-degree (number of friends named) between the simulated data and 

the observed network (Table 3). Simulated network structural characteristics (out-degree, 

reciprocated dyads, transitive triads and changes of ties) fit the observed data very well. For 

example, the empirical network had 1472 transitive triads, while our simulated networks 

averaged for 1480.76 triads with standard deviation 198.59. Network structure in the 

observed and simulated networks agrees well, with the average simulation statistics within 

2% of the observed value.

We further examined the triad census of the empirical and simulated networks. In general, 

triad counts for the most important types of triads were similar between observed and 

simulated networks. There were 262,010 dyads within triads (Holland and Leinhardt (1976) 

type 102) in the observed network; for the simulations, average count was 250,010. The 

number of complete cliques of size 3 (Holland and Leinhardt type 300) was 56 in the 

observed and an average of 135 in the simulated runs. On the other hand, 3-cycles (type 

030C) were rare in both observed (11) network and simulated (1) runs.

The final validation step was to compare the distribution of out-degree (number of friends 

named) and in-degree (number of friends naming the ego). The following plots (Figure 3 

and Figure 4) show that the simulated data (100 runs) fit the real data well, with the 

exception of degrees zero and one. The simulated models consistently under-simulated the 

number of isolates. Note that the maximum out-degree is 10 in the empirical data, as 

imposed by the friendship questionnaire employed in Add Health; the theoretical limit on in-

degree is much higher (623, for an ego named by all others in a network of 624).

Result for experiment 1 (impact of marginalizing overweight students)

When social marginalization was increased, the prevalence of overweight slightly decreased, 

although this did not to appear to be substantial [Figure 5; Table 4]. In conjunction with 
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social influence, isolating obese adolescents might tend to limit their influence on the 

system, while promoting friendships with leaner adolescents will have the opposite effect. 

Marginalization does not appear to be a promising strategy given the weak effect on 

overweight prevalence and the potential for negative psychosocial consequences (Crow, 

Eisenberg et al. 2008; Tang-Peronard and Heitmann 2008),. Conversely, our findings 

support efforts to improve social integration of obese adolescents, as such integration is 

unlikely to have any negative effect on healthy weight peers.

Results for experiment 2 (impact of homophily)

We varied the preference for agents to form or maintain friendships with others who are 

similar to themselves in body size (homophily on BMI), which would indicate greater 

clustering based on body size, and potentially more reinforcement of healthy or overweight. 

We can see that there is no appreciable difference in overall overweight prevalence between 

different levels of homophily in this model. This means that although students make friends 

based on the similarity, the effect of similarity do not substantively impact on overweight 

prevalence. When we artificially set the parameters for homophily on BMI to zero, negative 

the original, and strongly positive (4 times the original) values, this had no impact on 

overweight in the system. This suggests that homophily body size does not drive the results.

Results for experiment 3 (impact of social influence)

The percentage of overweight and obese agents differs dramatically among different levels 

of impact of social influence. As influence increased in this model, the prevalence of 

overweight decreased. In contrast to a finding of simple “contagion”, influence appears to 

serve as a check on weight gain. We see that the percentage of overweight and obese is 

lowest when the social influence is doubled while the percentage is highest with negative 

influence (Figure 7). When the friends of the student have more influence on the student’s 

behavior (BMI), the percentage will be lower since there are more normal weight agents in 

this model. Thus, peer influence may serve as a buffer to overweight, at least in the case 

where overweight prevalence is relatively low. This suggests that peer influence may be a 

tool for preventing or reducing overweight in adolescents.

Results for experiment 4 (impact of varying the BMI distribution)

Peer influence relates to the average peers’ value in the network. That is, in a network where 

most agents are healthy weight (BMI<25kg/m2), increasing influence will tend to pull back 

overweight and obese agents. The situation may be different in populations where 

overweight is the norm. Figure 8 shows the effect of increasing the mean BMI in 1-unit 

increments. As the mean BMI approaches the cut point for overweigh (25kg/m2), the 

absolute value of the slope relating strength of peer influence to the prevalence of 

overweight decreases to zero; above this value, the slope increases, meaning that greater 

peer influence increases the proportion of overweight adolescents in a population where 

most students are overweight. These results thus call for caution in making blanket 

recommendations for interventions, as peer influence may be beneficial only when healthy 

weight and healthy behaviors are the norm.
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Results for experiment 5 (random vs. targeted weight loss interventions)

Finally, we discuss the results of an overweight intervention that targets particular network 

members, and compare these interventions with those targeting randomly selecting 

overweight agents. Figure 9 shows the percentages of overweight and obese students under 

different selecting strategies. We can see that there is no large difference between selecting 

overweight and opinion leaders in overweight students (two box plots on the right). The 

percentages of overweight and obese for the interventions which selected opinion leaders 

from among the overweight students is lower than randomly selecting obese students by 

about 1 percentage point (approximately 6 study subjects). On the other hand, there was 

little difference in the proportion of underweight (defined as BMI ≤ 17kg/m2) across 

interventions: the mean (95% CI) proportion underweight was 4.9 (3.5, 6.3) under no 

intervention; 4.9 (3.4, 6.5) under randomly selecting overweight agents; and 4.8 (3.4, 6.3) 

targeting overweight opinion leaders.

Discussion

The models presented here attempt to move beyond pure simulations by incorporating real-

world network structure and dynamics. We have demonstrated a method of translating 

analytical models into an agent-based model. Conclusions of the models include that (1) 

peer influence may serve as a buffer to overweight and obesity rather than a vector of its 

spread, and (2) interventions based on real-world networks may not be as successful as 

highly clustered (grid lattice-based) simulations would suggest. Furthermore, while the 

model of Bahr (2009) suggested dieting with friends of friends would be successful, 

identifying the edges of overweight or obesity clusters in real-world networks is difficult.

Models that explored the role of stigmatization deserve special attention. Stigma’s role in 

perpetuating the AIDS epidemic is well know, yet at the same time, there was a robust push 

from advocacy groups to actively de-normalize smoking behavior and, by extension, 

marginalize smokers themselves (Bayer 2008). Bayer argues that stigma is defensible if 

there are also benefits to the groups being stigmatized, for example, if low-income (and 

therefore less empowered) smokers are more likely to quit as a result of taxes that burden 

them, a policy debate that has direct relevance to soda taxes and other efforts to combat 

childhood obesity (Gortmaker, Swinburn et al. 2011). Using Add Health network data, 

Strauss (2003) has found that overweight adolescents tend to be socially marginalized, 

which is one of the aspects of stigmatization. In particular, they nominate about the same 

number of friends as their non-overweight peers, but these nominations tend to be 

reciprocated at much lower rates than non-overweight adolescents. This marginalization or 

stigmatization comes at high social and psychological cost, especially for girls (Crow, 

Eisenberg et al. 2008; Tang-Peronard and Heitmann 2008), and may increase other 

unhealthy behaviors (especially tobacco use), exacerbating the problem of childhood obesity 

(Ratcliff, Jenkins et al. 2011). In a commentary on Bayer’s article, Burris (Burris 

2008)argues that measures such as taxation are not stigmatizing in and of themselves, 

although they may certainly support stigma. We therefore strongly oppose policies of 

stigmatization. We did not find any appreciable effect of increasing marginalization on 

obesity prevalence, but this does not mean that marginalization is unimportant for obesity. 

Zhang et al. Page 11

Soc Sci Med. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Following the model of smoking (eg, the Truth campaign), de-normalization of particular 

unhealthy eating behaviors may be a promising approach, and need not involve stigmatizing. 

At the same time, such de-normalization of behaviors must be careful to avoid de-

humanizing and shaming individuals, which are the hallmarks of stigmatization (Nussbaum 

2004; Burris 2008).

We wish to highlight one of the unexpected findings of our simulations: the inverse 

relationship between the strength of the peer influence parameter and the prevalence of 

overweight at the end of the simulations. The metaphor of obesity spreading like a virus (or 

“catching” obesity from friends) is misleading, as contagion may work both ways (ie, one 

can “catch” health and healthy behaviors as well). Peer influence will act to pull agents at 

the edges of the distribution toward the mean; as the mean increases, so will what is 

considered “normal”. This phenomenon has been observed in the increase in what is 

considered a normal body size overall (Burke, Heiland et al. 2009) and heterogeneity by 

racial-ethnic-gender group (Lynch, Liu et al. 2009). On the other hand, there is a basic 

biological tendency to accumulate and store fat, likely arising out of natural selection, as 

first proposed by Neel (Neel 1962). Our study population was relatively lean, with few 

overweight or obese adolescents; in a population with higher mean BMI, peer influence may 

serve to reinforce overweight and obesity, and our future work will explore this 

phenomenon using BMI distributions that are similar to those observed today.

This brings attention to a limitation of the use of real-world data. Because our model is 

closely tied to the Add Health data analyzed by THE AUTHORS, the results may not be 

generalizable outside of the population on which it is based. Nevertheless, one of the 

strengths of the ABM is their generality and flexibility (Epstein 2006; North and Macal 

2007); gaining future insights into the mechanisms (and potential policy targets) may require 

us to move beyond specific data as an input and to explore ranges of mechanisms that 

cannot be captured through analytical methods. Related to this, the model does not extend 

beyond one simulated year, when in fact we know that individuals’ weight continues to 

increase. Furthermore, we made a decision to include independent parameters in our model 

and explore changes one at a time. However, in the real world, peer influence and social 

marginalization may be interdependent and contingent. For example, if the social 

marginalization parameter were stronger, this may also entail a stronger peer influence 

parameter. We plan to explore such interdependence by relaxing this independence 

assumption in future work.

In the base case scenario, our model does a good job of predicting dynamics at the system 

level. However, predicting individual agents’ behavior is not possible in this model. In part, 

the divergence between individual and population-level fit may be due to the underlying 

SIENA model that serves as the primary input to our ABM; for large networks, SIENA fits a 

simulation model to population-level targets, although a maximum likelihood option is 

available which is more statistically efficient for small networks (Snijders, Koskinen et al. 

2010). A second reason for the discrepancy may be due to the general inability of any model 

to predict individual outcomes, a phenomenon that has been observed in epidemiology 

(Rockhill 2001; Rose 2001), while Macintyre offers a philosophical explanation of the 

impossibility of predicting human social behavior (MacIntyre 1984).
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We admit that the intervention proposed (a 4 unit drop among key agents) is an exogenous 

shock, and the means by which such weight loss is accomplished is unspecified by our 

model. We would argue, however, that while the specified weight loss is extreme and thus 

not realistic, the purpose of the model is not to explore whether one weight loss method is 

superior to another. Rather, our goal was to demonstrate the impact of network structure and 

dynamics on such a hypothesized intervention; to demonstrate that network members may 

be resilient to even highly successful interventions; and to show that proposed intervention 

strategies relying on peer leaders is unlikely to yield great benefit in the case of adolescent 

overweight and obesity. Similar findings were recently reported by El-Sayed and colleagues, 

using an ABM based on the work of Christakis and Fowler (El-Sayed, Seemann et al. 2013) 

but lacking the empirical network or network dynamics examined in our work. We note that 

experiments targeted only highly-connected overweight agents did not lead to any spillover 

effect on underweight, which would have been an unfortunate side effect.

Finally, we have demonstrated the novel finding that given an individual predisposition to 

gain weight, social norms can serve as a check (negative feedback). Identifying what 

specific normative mechanisms allow for social homeostasis of weight would be a fruitful 

endeavor. We have only assumed a limited range of mechanisms of peer influence, 

specifically, modeling behavior of average friends, and the potential stigmatization that can 

arise from overweight/obese. Furthermore, interventions that strengthen peer influence, such 

as promoting positive behaviors, may help reduce obesity incidence. At the same time, there 

is a potential to undermine health promotion campaigns, for example, by forcing students to 

interact with one another within official school settings mandated by authorities. This may 

have the unintended effect of watering down and reducing social influence, a phenomenon 

deemed “policy resistance” (Sterman 2006). Many other mechanisms and outcomes are 

possible, and we will explore these in future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Social networks may help us understand adolescent overweight and obesity

• Agent-based models allow for exploration of interventions on dynamic social 

networks

• Dieting interventions targeted to highly connected individuals are not promising

• Interventions that increase peer influence may be worthwhile

• Interventions are sensitive to underlying distributions in the network

Zhang et al. Page 17

Soc Sci Med. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 

Zhang et al. Page 23

Soc Sci Med. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
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Figure 8. 
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Table 1

Baseline characteristics

Measure Value

 Number of respondents 624

 Mean age at baseline (SD) 16.1 (1.1)

 Range of grades at baseline 9 to 11

 Male 47.4%

 Household income, in $1000 (SD) 45.2 (26.7)

 Mean BMI at baseline (SD) 22.4 (4.4)

 Range of BMI at baseline (min – max) 13 to 43

 Total number of ties at baseline 2201

 Mean out-degree (SD) at baseline 3.5 (2.3)

SD= standard deviation

BMI= Body mass index, in kg/m2
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Table 2

Parameter Estimation from SIENA model, with 95% confidence limits

Basic rate parameter friendship 12.87 (12.62, 13.85)

Outdegree (density) −3.56 (−3.64, −3.48)

Reciprocity 2.26 (2.13, 2.39)

Transitive triplets 0.48 (0.43, 0.53)

Same sex 0.18 (0.10, 0.26)

Same grade 0.49 (0.41, 0.57)

Age similarity 0.91 (0.62, 1.20)

Income similarity 0.060 (−0.23, 0.35)

Marginalization based on alter’s BMI −0.007 (−0.017, 0.003)

Sociability related to ego’s BMI 0.014 (0.003, 0.030)

Similarity of ego’s and alter’s BMI 0.54 (0.14, 0.95)

Rate parameter for BMI behavior 4.17 (3.57, 4.76)

BMI linear shape 0.16 (0.11, 0.22)

BMI quadratic shape 0.015 (0.004, 0.012)

BMI average similarity between ego and alter 14.10 (7.76, 20.44)
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Table 3

Overall comparisons of network

Observed Simulated (standard deviation)

Number of ties 1943 1952.72(67.64)

Number of transitive triads 1472 1480.76 (198.59)

Number of reciprocated dyads 856 861 (37.32)

Number of tie changes 2484 2448.32 (204.47)
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Table 4

Summary of experimental results

Experiment 1: Change Marginalization Mean Percent
Overweight (95% CI)

Strong Negative Marginalization 23.5 (21.0, 26.1)

Original Value 24.0 (21.4, 26.6)

No Marginalization 24.0 (21.4, 26.6)

High BMI more Attractive 24.1 (21.4, 26.7)

Experiment 2: Change Homophily

2 times Negative Homophily 24.1 (21.4, 26.8)

No Homophily 23.9 (21.4, 26.5)

Original Value 24.0 (21.4, 26.6)

4 times Original Homophily 23.7 (21.3, 26.1)

Experiment 3: Change Influence

2 times Negative Peer Influence 32.3 (27.4, 37.3)

No Peer Influence 27.3 (23.7, 30.9)

Original Value 24.0 (21.4, 26.6)

Double Original Peer Influence 20.6 (18.6, 22.7)

Experiment 4: Change influence under shifted BMI distribution

Mean BMI 23

Negative 38.0 (33.1, 42.8)

Original 31.6 (28.0, 35.1)

Positive 28.8 (26.5, 31.1)

Mean BMI 24

Negative 45.5 (41.8, 49.3)

Original 42.0 (38.2, 45.7)

Positive 39.4 (35.6, 43.2)

Mean BMI 25

Negative 53.2 (50.8, 55.6)

Original 54.0 (49.7, 58.3)

Positive 54.7 (50.3, 59.1)

Mean BMI 26

Negative 61.0 (59.1, 62.8)

Original 67.7 (64.4, 71.1)

Positive 70.9 (65.7, 76.1)

Experiment 5: Targeted vs. random interventions Mean Percent
Overweight (95% CI)

No Strategy 24.0 (21.4, 26.6)

Randomly Selected Overweight 19.5 (17.0, 22.1)

Overweight Opinion Leader 18.7 (15.9, 21.6)

Mean Percent
Underweight (95% CI)

No Strategy 4.9 (3.5, 6.3)
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Randomly Selected Overweight 4.9 (3.4, 6.5)

Overweight Opinion Leader 4.8 (3.4, 6.3)
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